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Plane stagnation flow is known to be linearly stable to three-dimensional perturba- 
tions. The purpose of this theoretical study is to show that the same flow can be 
destabilized if fluctuation levels are sufficiently high. In  the present formulation, 
finite-amplitude disturbances are expanded in terms of the eigenfunctions pertaining 
to the linear stability of potential stagnation flow and a Galerkin method is used to 
derive the nonlinear amplitude equations coupling the different modes. Two- and 
three-mode interaction models based on the least-damped eigenfunctions of linear 
theory indicate that three-dimensional fluctuations can be triggered to grow ex- 
ponentially above a certain critical intensity. The existence of such a threshold is in 
qualitative agreement with experimental studies of the secondary vortices arising in 
flows past blunt bodies. 

1. Introduction 
It is known from experimental observations that steady or unsteady streamwise 

vortices may be formed in the stagnation region of flows past bluff bodies. Piercy 
& Richardson (1928) were the first to detect the presence of large unsteady velocity 
fluctuations in the stagnation-flow region of bluff bodies. More recent investigations 
by Sadeh, Sutera & Maeder (1970), Colak-Antic (1971), Hassler (1971), Hodson & 
Nagib (1975) and Sadeh & Brauer (1980), among others, have revealed a wealth of 
possible secondary-flow regimes. Applications of stability theory to viscous plane 
stagnation flow have been mainly motivated by the need to understand this peculiar 
phenomenon. For a comprehensive and critical account of this class of instabilities, 
the reader is referred to the review by Morkovin (1979). 

The presence, in the plane-viscous-stagnation-flow region, of mean flow vorticity 
and concave streamline curvature led Gortler (1955) and Hiimmerlin (1955) to suspect 
that the secondary vortices might be the result of a centrifugal instability mechanism. 
The geometry of the flow considered by these authors is as sketched in figure 1 and 
their linear stability analysis is essentially contained in (7) and (8) of $3, where the 
growth rate cr was set identically equal to zero. The three-dimensional perturbations 
of spanwise wavenumber k, which satisfy system (8), were required by Gortler and 
Hiimmerlin to decay algebraically at upstream infinity. This asymptotic boundary 
condition leads to a continuous spectrum of spanwise wavenumbers, 0 < k < 1, with 
no clear conclusion as to the stable or unstable nature of viscous plane stagnation 
flow. 

The work of Wilson & Gladwell (1978) has now considerably clarified the issue of 
the ‘correct ’ asymptotic boundary condition at upstream infinity. If disturbances are 
to be viewed as originating in the viscous-stagnation-flow region, they must decay 
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exponentially far upstream. Such a condition then leads to a discrete spectrum of 
eigenvalues a ( k ) ,  none of which are positive. Thus the conclusion of Wilson & 
Gladwell (1978) is that viscous stagnation flow is linearly stable to three-dimensional 
disturbances of the form given by (7).  In  contrast with this situation, vortical 
disturbances forced from the outer potential mean flow will experience algebraic 
growth or decay as they enter the viscous layer; they correspond, in the linear theory, 
to the continuous spectrum of Gortler and Hammerlin. 

An extension of Gortler and Hammerlin’s linear results to small-but-finite amplitude 
perturbations has been proposed by Iida (1978). The weakly nonlinear formalism of 
Stuart (1960) and Watson (1960) is used to derive an amplitude equation governing 
the evolution of fluctuations. It should be emphasized that such an approach is only 
valid in the neighbourhood of a neutral stability boundary, say, in the wavenumber- 
Reynolds-number plane. But viscous plane stagnation flow is a self-similar solution 
of the Navier-Stokes equations in which the Reynolds number does not appear as 
an independent parameter. The flow is linearly stable and there is no neutral curve. 
This is in contrast to the related flow situation of a boundary layer over a curved 
plate, in which the Gortler number serves as the independent parameter (see, for 
example, Hall 1982, 1983). The case of plane stagnation flow is then qualitatively 
similar to the case of pipe flow that is linearly stable at all Reynolds numbers. The 
weakly nonlinear approach does not seem to be applicable to this class of problems. 

To analyse the linear and nonlinear stability problems, we choose instead a 
Galerkin expansion method which does not require for its application the existence 
of a neutral stability boundary. The basic formalism is given in $2. The linear and 
nonlinear stability of stagnation flow are discussed respectively in $93 and 4. The 
results are presented in $5. 

2. Basic formulation 
We consider an infinite flat plate oriented normal to the direction of an initially 

uniform stream. The geometry of the flow and the coordinate system are indicated 
in figure 1.  The flat plate is in the (2, 2)-plane and the basic flow is two-dimensional 
in the (x, y)-plane, the x-axis being the streamwise direction along the plate, and the 
z-axis the spanwise direction. The stagnation streamline coincides with the y-axis. 
The spatial coordinates x, y, z ,  the time t ,  and all the dependent flow variables have 
already been made non-dimensional with respect to the upstream velocity V, and 
the boundary-layer thickness 6. In addition, let 

X x = -  T , t  
R’ R 

denote rescaled x- and t-coordinates, R being the Reynolds number based on 6 
and V,. 

The total velocity components U ,  V ,  W along the x-, y- and z-directions, and the 
pressure P are then assumed to be in the separable form 

U(X,Y,Z, T )  = XF’(y)+X.ii(y,z, TI, 
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FIOUI~E 1. Hiemenz two-dimensional stagnation flow. 

where the stream function of the basic flow is X F ( y ) .  The three-dimensional 
fluctuations are indicated by a caret. The basic flow is taken to be the exact Hiemenz 
solution of the two-dimensional Navier-Stokes equations (see Schlichting 1979). 
Substitution of the decomposition (2) into the NavierStokes equations yields the 
nonlinear perturbation equations 

Note that the X-dependence of the flow variables has been explicitly separated 
according to (2); system (3) is composed of partial differential equations in y ,  z and 
T only. Equation (3 b) governs the evolution of the streamwise perturbation-vorticity 
component w defined in ( 3 4 .  It has been obtained by eliminating the pressure from 
the original equations. Disturbances are required to decay exponentially at y = co 
and the no-slip boundary conditions 

(3e) 

In  the present work, a Gelerkin method (DiPrima 1967; Finlayson 1972) is 

. i i ( O , Z ,  T )  = 4(0,z, T) = & ( O , Z ,  T )  = 0 

are imposed on the surface of the plate. 
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implemented t o  study both the linear and nonlinear stability problems. Thus we 
assume general expansions of the form 

m 

+ 2 E {&&(TI ~ t & ( y )  cos ( y z )  + A ~ A ( T )  ug&(y) sin (nqz ) } ,  (4a)  
n-1 m-1 

a, 

4(y, 2, T) = ApA(T) wfi(y(Y) 
m-1 

0 3 0 0  

+ z z {-4t&(T) wt&(y)  sin (nqz) +A$&(T) wf&(y) cos ( q z ) ) ,  ( 4 b )  

where the subscript n indicates the order of the spanwise harmonic k = nq, and the 
subscript m the mth trial function. I n  other words, disturbances are taken to be 
periodic in the spanwise z-direction, of wavelength 27c/q. The expansion for v and w 
are of the same form as u and w respectively. 

The amplitude functions {Atk(T')} are at this stage unknown, and the infinite set 
of trial function vectors UtAT = {u:&, w$&, v$L, wt&} must be selected so as to  satisfy 
the boundary conditions a t  y = 0 and y = co. The linear eigenfunctions of Hiemenz 
flow, calculated by Wilson & Gladwell (1978), do meet these requirements. However, 
higher eigenvalue branches are unknown and their determination would require 
extensive numerical calculations. I n  this study, we prefer to choose trial functions 
that not only satisfy all the boundary conditions, but also can be entirely derived 
analytically, namely the linear eigenfunctions pertaining to  the stability of potential 
stagnation flow F(y) = y (see $3.1). 

The goal of the Galerkin method is then to generate a system of nonlinear ordinary 
differential equations describing the evolution of the modal amplitude functions 
{AtA(T)} .  To this end, the following methodology is employed. Expansion (4) is first 
substituted into the full nonlinear equations (3), and coefficients of cos(nqz) and 
sin (7142) are separately equated to  yield an infinite set of coupled equations for the 
vectors Uf&(y). We then take the inner product, defined as 

n-i m-1 

of each resulting equation with the adjoint trial-function vector ??fh(y) to obta,in 
the system of nonlinear evolution equations : 

ucn 00 

dT r-1 
C (anmr A$:) + Q$&[A~~)l,  (6) nm - -- 

where n = 1,2,  ..., m = 1,2,  ..., a n d j  = 1,2. The functions Qt& are quadratic forms 
in the modal amplitudes A:?. At small amplitudes, these quadratic terms are 
negligible and all harmonic components decouple from each other. For a given 
wavenumber k = nq, an infinite set of linear ordinary differential equations is then 
obtained and the eigenvalues of the matrix {unmr}, n fixed, coincide with the linear 
growth rates of viscous stagnation Aow evaluated at k = nq. 
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3. Linear stability of plane stagnation flow 
In this section, we first determine analytically the viscous linear stability charac- 

teristics of potential stagnation flow F = y. The associated eigenfunctions are then 
used as trial functions to determine via the Galerkin method the stability properties 
of Hiemenz stagnation flow. The same set of trial functions is chosen in the nonlinear 
stability analysis. Since Hiemenz flow reduces to potential flow in the limit yj-00, 
the wymptotic behaviour of the eigenfunctions at  large y will be the same for both 
basic flows. Furthermore, while the basic potential flow allows slip on the plate y = 0, 
no-slip boundary conditions are enforced on the fluctuations. Thus the eigenfunctions 
of F = y, which satisfy the same boundary conditions as'those of Hiemenz flow, are 
ideally suited to constitute a set of trial functions in the Galerkin expansion (4). As 
shown in $3.3, this selection of trial functions serves to elucidate the structure of the 
perturbed flow field. 

In linearized analyses of viscous stagnation flow, the nonlinear terms on the 
right-hand side of system (3) are neglected and the perturbation quantities are further 
assumed to be of the form 

d(y,z,T) = {u(l)(y; k) coskz+u(2)(y; k) sinkz} eU(k)*, 

Cj(y,z, T) = {w(l)(y; k) sinkz+d2)(y; k) coskz} eU(k)T, 

8(y, z ,  T) = {w(l)(y; k) cos kz+v@)(y; k) sin kz} eU(k) *, 
$(y, z, T) = {w(l)(y; k) sinkz+w@)(y; k) cos kz} e'(k)T, 

( 7 a )  

( 7 b )  

( 7 4  

( 7 4  

where k denotes the spanwise wavenumber and v the temporal growth rate. The 
governing equations pertaining to variables with a (1)  superscript then reduce to the 
following ordinary differential equations 

with exponentially decaying boundary conditions at y = a and 

u"'(0; k) = v(l'(0; k) = w(1)(0; k) = 0. (8e )  

The above system defines an eigenvalue problem for the auxiliary parameter 
u(k) = -n(k) -k2 ,  and the solution vector U(l)T(y; k) = { ~ ( ~ ) , d ) , v ( ~ ) ,  w(l)}. The 
variables denoted by a superscript (2) satisfy the same equations and boundary 
conditions, provided that w and w are changed in sign. The growth rates u@)(k) and 
d 2 ) ( k )  are therefore identical, as already anticipated in decomposition ( 7 ) ,  where we 
have set &(k) = d 2 ) ( k )  s ~ ( k ) .  Furthermore, the direct numerical integration of 
system (8) performed by Wilson & Gladwell (1978) has indicated that the eigenvalues 
of the least-damped branch crl(k) are negative for all k, which implies that Hiemenz 
flow is linearly stable. 
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3.1. Linear stability of potential stagnation flow 
When k =I= 0, the solution of the linear system (8), with F = y, can be expressed in 
terms of parabolic cylinder functions D,u(y). After excluding algebraically growing 
or decaying solutions at y = co , and imposing the boundary conditions at y = 0, one 
obtains the dispersion relation 

for the eigenvalues {v , (k)} ,  m = 1 ,2 ,3 ,  ... . When the first and second factor are 
individually set equal to zero, one obtains two distinct families which are respectively 
denumerated by odd and even subscripts. The integral expression in (9) has an infinite 
number of roots{u,,-,(k)}, p = 1 , 2 , 3 ,  . .. , which must be determined numerically. The 
even-numbered eigenvalues, defined as the zeroes of D,,-3(0), take the simple form 

~ , , - , ( k )  = 2p, p = 2 , 3 ,  ... . (10) 

Thus there is a double infinity of eigenvalues { ~ , , - ~ ( k ) } ,  { ~ ~ ~ - , ( k ) }  or, equivalently, 
{ ~ , , - ~ ( k ) } ,  {u,,-,(k)}, the variations of the first few branches with wavenumber k being 
shown in figures 2 and 3.  With the exception of the least-damped mode a l ( k ) ,  
eigenvalues occur in even and odd pairs. Note, however, that our indexing scheme 
for m does not order successive branches in terms of monotonically decreasing values 
of (T. Growth rates u are found to be negative for all values of k and all branches, 
indicating that potential stagnation flow is linearly stable. The components of the 
eigenvectors Vg)(y ; k) pertaining to the odd-numbered and even-numbered families 
are, respectively, 

( 1 l a )  u(l) 2,-1(y; k) = 0, 
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FIGURE 2. Eigenvalue branches of potential stagnation flow in (k, +plane. 
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FIGURE 3. Eigenvalue branches of potential stagnation flow in (k, a)-plane. 

where He, (y) denotes the Hermite polynomial of order 1. The eigenfunctions have 
been normalized so that w ( 0 ;  k) = 1, 
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FIGURE 4. Eigenvalue branches of viscous stagnation flow (-) in (k, v)-plane. Comparison 
with potential-stagnation-flow branches (---). , 
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FIQURE 5. Comparison with numerical results of Wilson & Gladwell (1978) : 
-, single-mode approximation ; ---, numerical results. 

-k2P-2 He 2p-2 (0) Srn e-ttP cosh (kt) dt 

(13c) 
0 

Y2p-2W = 

He2p (0) Jam e--:tP-kt He2p-3 (t)  dt 

In (11) and (13a), it is implied that v(k) = v2p-l(k). The adjoint eigenfunctions can 
be determined analytically by standard techniques (Morse & Feshbach 1953). (For 
further details, see Lyell 1982.) 

3.2. Linear stability of Hiemenz stagnation flow 
The trial-function vectors U$$,,(y) appearing in (4) are chosen to be the eigenvectors 
U$,$(y; nq) of potential stagnation flow evaluated a t  the wavenumber k = nq. 
Correspondingly, weselect theadjoint trial-function vector to be @h(y) = o$)(y ; nq). 
For simplicity, we consider a class of motions for which z'i and .ir are even functions 
of z and ŵ  and zi, are odd functions. It is then straightforward to check that these 
symmetry properties are preserved under the nonlinear governing equations (3). Thus 
in the rest of the work, (4) is assumed to contain only eigenvectors with a (1) 
superscript. Henceforth, this superscript will be 0mitted.t 

t However, it should be stressed that, in general, the Fourier series expansion (4) in z will be 
a linear combination of both sets of eigenvectors. 
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FIQURE 6. Potential-stagnation-flow eigenfunctions : first branch m = 1 ,  k = 0.30. 

The linear growth rates ug(k)  pertaining to viscous stagnation flow are given by 
the eigenvalues of the matrix {anm}, n fixed, appearing in the amplitude equations (6). 
Leading-order Galerkin approximations can be obtained by considering single 
trial-function truncations for each branch. The resulting first three eigenvalues, 
vr(k)  = - ur(k)  - k2, i = 1,2,3,  as well as their potential-flow counterparts, are 
displayed on figure 4. In both instances, there is an infinite number of eigenvalues 
which are all damped (v > 0, < 0). We note, however, that the decay rates I u I of 
Hiemenz flow are smaller than those of potential stagnation flow. Thus the simul- 
taneous presence of mean-flow vorticity and streamline curvature is linearly 
destabilizing but the associated inviscid centrifugal instability mechanism is too weak 
to overcome viscous forces. In figure 5 our results for the least-damped batch are 
compared with the numerical values of Wilson k Gladwell (1978) : the single-mode 
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FIGURE 7. Potential-stagnation-flow eigenfunctions: second branch m = 2, k = 0.30. 

-0.1 

approximation falls within 10 yo of the exact eigenvalue. Two-mode truncations 
performed at  k = 0.30 are found to approach Wilson & Gladwell's results within 5 % . 
Thus our choice of trial functions is seen to provide good estimates of the linear 
eigenvalues, even when the modal expansions are drastically truncated. 

- -0.2 

- 0.4 

3.3. Structure of the perturbation $ow jield 
Attention is now given to the perturbed flow field associated with potential stagnation 
flow. The eigenfunctions of the least-damped mode at  k = 0.30 on the first branch 
m = 1 are displayed in figure 6.  Note that odd-numbered branches are characterized 
by a zero streamwise velocity u and a vorticity vector aligned in the streamwise 
direction: they give rise to a purely two-dimensional fluctuating motion in the 
(y, %)-plane. The eigenfunctions of the second branch m = 2 at k = 0.30 are represented 
in figure 7 .  We note that, for both families, all variables decay exponentially a t  
upstream infinity, thereby satisfying the same asymptotic boundary conditions as 
those derived in Wilson & Gladwell (1978). A t  zero wavenumber, the even-numbered 
modes correspond to a strictly two-dimensional vortical motion in the (u, v)-plane (see 
figure 8), whereas the odd-numbered modes represent a purely spanwise w-motion. 
Both types of perturbations represent possible mean-flow distortions of the basic 
two-dimensional stagnation flow. The mean of a flow quantity is here defined as being 
taken over one wavelength in the spanwise direction and may be time dependent. 
Eigenfunction shapes were found to be fairly insensitive to changes in k within the 
range 0.1 < k < 1.2. Perturbation streamlines and lines of constant streamwise 
vorticity in the (y, 2)-plane are illustrated in figures 9, 10, and 11 for the first three 
branches. The streamline plots clearly indicate that the perturbation field of each 
mode is composed of counter-rotating streamwise vortices periodically distributed in 
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FIGURE 8. Potential-stagnation-flow eigenfunction: second branch m = 2, k = 0. 
Normalization condition changed to du(0, O)/dy = 1. 

the spanwise z-direction. According to the order of the mode, several layers of vortices 
may be stacked on top of each other in the upstream y-direction. Hence, whereas the 
first two odd modes m = 1 and m = 3 are composed of only one layer, the first even 
mode m = 2 is characterized by two layers. The number of layers increases 
monotonically with the modal index p but remains constant with spanwise 
wavenumber k along a given branch. There does not seem to exist any obvious 
relationship between the index p and the number of layers. The above discussion has 
been restricted to  disturbances of class (1) in the sense of equations (7).  Disturbances 
of class (2) have the same eigenvalues {v,(k)} as those of class (l) ,  the associated 
eigenfunction vectors Ug)(y; k )  being related to U$)(y; k )  by the transformation 

{&) - (1) (1) - (1) ug)T = m ,  w m , v u , ,  wm}* 

4. Nonlinear stability of viscous stagnation flow 
I n  selecting a suitable truncation for the nonlinear study, i t  is first desirable to 

choose few enough modes so that the system of amplitude equations can be analysed 
in detail. Thus in this initial investigation of the nonlinear stability of Hiemenz flow 
we have not attempted t o  provide a quantitative picture of the finite-amplitude 
regime but rather we have sought to  show that nonlinear interactions between a few 
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FIQURE 9. Perturbation streamlines (a) and constant-streamwise-vorticity 
contours ( b ) :  m = 1, k = 0.30. 
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FIGURE 10. Perturbation streamlines (a)  and constant-streamwise-vorticity 
contours ( b ) :  m = 2, k = 0.30. 
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FIQURE 11.  Perturbation streamlines (a) and constant-streamwise-vorticity 
contours ( b ) :  m = 3, k = 0.30. 
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modes can indeed lead to instability. The following three-mode decomposition has 
been selected : 

The spanwise wavcnumber is taken to be the least damped according to linear theory : 
q = 0.30. All higher harmonics have been discarded. We have only retained the two 
leading three-dimensional modes All( T) and A,,( T) located on the first odd-numbered 
branch and even-numbered branch and the single least-damped two-dimensional 
mode A,,(T). These disturbances are indicated by circles on the attenuation-versus- 
wavenumber diagram of figure 3. Following the procedure outlined in $2, one is led 
to the third-order system 

dA,, d T  = -2.9648,,- 1 .197AE, -0.005A~,+0.006Al, A,,, ( 1 5 4  

11- dA - - 1.312A11+0.268A12-0.791A02 A,,-0.097A0,A,,, 
dT 

dA,, = -3.407A1,-0.387A1,+ 1.171A0,A1,- 1.458A0,A,,. 
d T  

This system possesses two critical points in the phase space (A,,, A,,, Ao2) of solution 
trajectories. The origin is a stable node, as it should be, since it represents Hiemenz 
flow, which is stable to infinitesimal disturbances. The other critical point is at 
(A,,, A,,, A,,) = (0, 0, -2.476) and is found to be an unstable spiral: in its immediate 
vicinity, the phase flow is expanding in the direction of decreasing A,, and undergoing 
a spiralling motion in the plane A,, = -2.476. Solution trajectories located below 
the plane A,, = -2.476 become unbounded and therefore give rise to amplified 
disturbances. Initial conditions corresponding to points in phase space such that A,, 
is positive only give rise to damped disturbances. Trajectories starting in the region 
of phase space delimited by the two planes A,, = 0 and A,, = - 2.476 either converge 
to the origin or become unbounded, the nature of the motion varying from point to 
point. The destabilizing effect of the two-dimensional mode A,, is further confirmed 
by two-mode truncation models which may easily be generated from (15). The 
structure of phase space for the (A,,, A,,) and (A,,, A,,) bi-modal interaction systems 
is shown in figures 12 and 13 respectively. In both cases, there is a threshold curve 
in phase space separating trajectories which are attracted to the origin from those 
which are unbounded. For amplitudes of the two-dimensional mode such that 
A,, < - 2.476, disturbances always become amplified and the linearly stable Hiemenz 
flow is destabilized. 

We do not mean to imply that Hiemenz flow can be nonlinearly destabilized only 
if a two-dimensional mode of sufficiently large initial amplitude is present. For 
instance, the study of a two-mode truncation (Al, ,A2,) involving only three- 
dimensional disturbances has indicated finite-amplitude instability above a threshold 
value of the order of 10 (Lye11 1982). 
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A , ,  

4 (- 2.476, 0)  ' 

FIGURE 12. Two-mode truncation. Phase flow in plane (A,,, All).  

FIQURE 13. Two-mode truncation. Phase flow in plane (A,,, &). 

5. Discussion and conclusions 
In the linear stability analysis of Hiemenz flow we have shown that the eigenvalues 

andeigenfunctions calculated by Wilson & Gladwell (1978) constitute the least-damped 
mode of an infinite number of modes, all of which are attenuated in time. Each mode 
corresponds, in the terminology of Morkovin (1979), to a vortex module composed 
of a specific number of streamwise vortices stacked in the upstream direction, the 
number of layers increasing with the order of the mode. The presence of concave 
streamline curvature and mean-flow vorticity had led Gortler (1955) and Hiimmerlin 
(1955) to suspect that Hiemenz flow is centrifugally unstable. According to our 
comparison of the attenuation rates prevailing in potential stagnation flow and 
viscous stagnation flow, mean-flow vorticity indeed leads to a relative destabilization 
by centrifugal forces but viscous effects are too strong to give rise to linear instability. 
We note that the vortical structures exhibited in the flow-visualization studies of 
Hodson & Nagib (1975) and Sadeh & Brauer (1980) are fully consistent with the 
three-dimensional perturbed flow field of the least-damped branch m = 1. Such 
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FIQURE 14. Two-dimensional mean flow obtained by superposition of Hiemenz flow and 
two-dimensional mode m = 2, k = 0, at instability threshold A,, = -2.476. 

patterns are also in agreement with the vortex-module concept of Morkovin 
(1979). 

Highly truncated Galerkin expansions in terms of the eigenfunctions of potential 
stagnation flow have shown that Hiemenz flow can be nonlinearly destabilized if the 
level of two- or three-dimensional disturbances exceeds a certain threshold value. We 
note that the magnitude of the threshold is large enough to lead to flow reversal in 
the immediate vicinity of the wall, as shown by the two-dimensional mean-flow 
streamlines of figure 14. However, it is unlikely that such a pattern will be observed 
in practice, as it is unstable. Since our models do not display a stable critical point, 
other than the origin, the ultimate finite-amplitude state above threshold is beyond 
the scope of this analysis. Nonlinear interactions have so far been limited to two or 
three modes and this conclusion can only be viewed as qualitative. The modes that 
have been retained are, however, those which are least attenuated according to linear 
theory and can be most easily destabilized. 

In the experiments of Hodson & Nagib (1975), the only ones to be discussed here, 
controlled free-stream disturbances were provided by the wakes shed from a periodic 
array of rods placed at  a certain fixed distance upstream from a circular cylinder. 
The structure of the stagnation flow field was then observed for various rod Reynolds 
numbers. At  low Reynolds numbers, of the order of 30, steady counter-rotating 
vortices were found to characterize the response to the steady upstream spanwise 
periodic wakes. In all cases, these experiments indicated that the secondary flow could 
be observed only if the strength of the wakes exceeded a certain threshold level. A t  
higher rod Reynolds numbers, of the order of 90, the steady upstream wakes gave 
way to laminar Karmhn vortex streets and the secondary vortices became unsteady 
as a result of the time-periodic excitation. 

The existence of a theoretical threshold agrees with the experimental observations 
in the steady regime. We note, however, that in the theory the threshold pertains 
to the level of perturbations at t = 0, in an initial-value problem, where all normal 
modes are exponentially decaying far upstream. In experimental studies, disturbances 
are forced into the flow from upstream and experience algebraic decay or growth as 
they penetrate the stagnation-flow region. The precise process by which such forced 
disturbances might trigger an instability of the normal modes remains to be 
investigated. 
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